
 PegScrat: Quadruped Foot Placement Hierarchical Planning 
 Neil Janwani, Josh Hejna, Shiva Sreeram, Krishna Pochana 

 1) Introduction 
 For  a  quadruped  robot,  path  planning  presents  a  unique  challenge.  For  an  autonomous 

 car,  one  needs  to  consider  constraints  like  the  size  of  the  robot  for  avoiding  obstacles  and  wheel 
 size  for  turning  radius.  Compared  to  these  systems,  a  quadruped  contains  more  choices  for  a 
 single  action  due  to  the  high  number  of  DOFs  in  the  system.  For  example,  a  quadruped  requires 
 one  to  plan  foot  placement  when  moving  from  one  location  to  another,  which  must  be  repeated 
 for  each  leg,  as  well  as  assigning  specific  locations  to  four  legs  within  areas  of  possible 
 placement.  Thus,  it  is  easy  to  see  that  the  dimensionality  of  the  problem  increases  greatly  along 
 with  the  complexity  of  a  local  planner,  thus  requiring  unique  planning  methods.  This  project 
 seeks  to  implement  a  path  planning  algorithm  for  a  quadruped  robot  on  a  simplified  terrain 
 model  consisting  of  discrete  allowed  foot  locations  (“pegs”)  with  motion  constrained  by  leg 
 lengths  and  geometry.  In  this  paper,  we  will  discuss  the  implementation  of  a  hierarchical  planner 
 for navigating this quadruped over terrain with both random and patterned valid foot placements. 

 2) Approach 
 2.1) Problem Setup 

 To  simplify  the  problem  of  quadruped  navigation,  it  was  decided  to  generate  a  set  of  pegs 
 with  uniform  height  over  a  finite  space.  These  pegs  represent  the  space  of  valid  leg  placements  in 
 arbitrarily  complex  terrain,  thus  discretizing  valid  paths  through  the  space.  All  possible 
 quadruped  foot  placement  states  exist  within  a  4-dimensional  discrete  space,  where  each  axis 
 selects a peg. 

 Continuous  regions  of  valid  foot  placements  (floors,  etc)  can  be  modeled  by  sampling 
 pegs  within  these  spaces.  Non-navigable  areas,  such  as  high  elevation  areas  or  ravines,  are 
 simply excluded from sampling to ensure the quadruped avoids them. 

 We  limit  the  scope  of  our  problem  to  planning  the  series  of  foot  placements  themselves, 
 ignoring  the  dynamics  between  these  states.  There  is  taken  to  be  a  valid  movement  between  two 
 foot  placements  if  and  only  if  they  differ  in  the  location  of  exactly  one  foot.  Taking  each  state  to 
 be  balanced,  there  will  always  be  a  dynamic  transition  between  two  such  states,  though  the  robot 
 may  not  remain  balanced  while  carrying  out  this  transition.  Generating  paths  with  particular 
 properties in the state transitions was deemed out-of-scope. 

 In  sum,  the  4-dimensional  configuration  can  be  viewed  as  a  subset  of  with { 1 ,     2 ,    ...,     𝑛 } 4 

 connections  between  any  two  points  Manhattan  distance  1  away  from  each  other.  Our  overall 
 task  was  to  find  robust  methods  for  generating  paths  through  this  highly  connected 
 4-dimensional space. 



 2.2) Approach Introduction and Rationalization 
 Naive  graph  search  over  this  space  is  quickly  shown  intractable,  as  a  reasonable  model  of 

 terrain  will  easily  contain  at  least  one  thousand  pegs,  resulting  in  a  search  graph  with  over  one 
 trillion  nodes.  Clearly,  any  search  method  hoping  to  find  the  actual  best  path,  including  A*  with 
 admissible or consistent heuristics, will require intractable computation. 

 Presented  with  the  task  of  path  planning  over  such  a  space,  the  two  main  methods 
 covered  in  class  of  PRM  and  RRT  based  planning  would  both  be  functional  at  a  first  glance. 
 Briefly,  in  the  connected  map  case,  the  generated  set  of  pegs  would  be  sampled  to  make  states  of 
 4  pegs  for  the  quadruped  to  stand  on,  with  valid  states  being  maintained.  Then,  the  standard 
 PRM  process  could  be  followed,  with  valid  transitions  being  defined  as  those  in  which  only  one 
 or  two  leg  placements  are  moved.  In  the  RRT  case,  the  quadruped  would  begin  in  a  valid  start 
 state  (set  of  four  pegs  with  each  leg  assigned  to  be  on  a  peg).  Then,  at  random  a  leg  could  be 
 selected  to  move,  and  the  direction  of  movement  determined  by  the  RRT  process,  with 
 “direction” defined as the vector between the quadruped’s torso and the end state. 

 However,  following  regular  PRM  planning  would  be  redundant  in  our  setup,  if  not 
 detrimental,  to  planning.  PRM  works  to  discretize  a  continuous  space,  thus  enabling 
 time-efficient  search  methods  over  this  discretized  space.  However,  our  setup  is  already 
 discretized  since  it  is  made  of  a  set  of  pegs,  and  thus  probabilistic  sampling  of  pegs  does  not 
 need  to  be  done.  Further,  randomly  sampling  over  a  set  of  pegs  would  be  less  likely  to  generate  a 
 valid  state  of  4  pegs,  and  less  likely  to  generate  states  that  involve  transitions  of  one  or  two  legs 
 only.  Increasing  the  number  of  pegs  and  specializing  the  state  sampling  methods  can  address  the 
 former problem, but not the latter, ultimately making naive PRM intractable for this problem. 

 Instead,  we  treat  our  discrete  configuration  space  much  like  a  continuous  one,  (motivated 
 by  its  high  density)  and  leverage  a  local  planner  to  decide  if  sampled  states  are  connected.  Here, 
 we  leverage  an  A*  search  with  an  extremely  pessimistic  heuristic.  This  results  in  searches 
 narrowly  remaining  around  the  path-of-steepest  descent  for  the  heuristic,  which  is  a  straight  line 
 between  the  start  and  goal  in  physical  space.  Overly-pessimizing  the  heuristic  allows  A*  to  find  a 
 valid  path  in  a  reasonable  time,  provided  a  path  exists  nearby  to  the  path-of-steepest  descent,  a 
 straight  line  in  physical  space.  If  such  a  path  does  not  exist,  then  the  search  must  consider  all 
 possible  states  nearby  to  this  line,  before  moving  onto  the  location  of  the  real  path,  making  the 
 search  intractable.  Thus,  by  imposing  search-time  limits,  we  can  use  A*  search  over  the 
 configuration  space,  but  only  as  a  local  planning  primitive.  The  search  decides  if  a  straight-line 
 path  of  short  enough  distance  exists  between  two  states.  Usage  of  this  local  planner  makes 
 ordinary PRM planning practical. 

 Using  this  combination,  we  are  able  to  find  paths  in  all  scenarios  one  would  expect  PRM 
 to  succeed  in  while  maintaining  the  discrete  nature  of  valid  foot  placements,  which  is  required  to 
 model arbitrary terrain. 



 Here  we  see  a  raw,  pessimistic  A*  performed  in  two  different  environments.  When  there 
 is  a  straight-line  path,  it  is  found  (left).  When  there  is  not,  (right)  the  search  will  get  stuck  in  a 

 “local  minima”  and  evaluate  many  thousands  of  states  in  that  area  in  ,  ultimately  failing  to  find  𝑅  2 

 a path in reasonable time. 

 3) Technical Details 
 3.1) State Definitions 

 The  quadruped’s  design  involves  four  locations  of  interest  for  planning—the  locations  of 
 the  four  feet  tips.  Thus,  each  state  is  defined  as  a  4-tuple  of  the  pegs  that  the  quadruped  stands 
 on,  with  each  leg  tip  being  assigned  a  determined  peg  within  the  state.  Note  that  while  the  state 
 exists  in  a  discrete  space,  the  foot  placements  are  also  occasionally  brought  into  task  space, 

 where it would consist of four points in  .  𝑅  2 

 3.2) Freespace Determination - Heuristic 
 As  stated  above,  the  configuration  space  is  a  4-dimensional  lattice,  with  the  free  space 

 being  a  subset  thereof.  Determining  if  a  point  is  free  requires  determining  of  the  corresponding 

 four  points  in  represent  a  feasible  position  for  the  quadruped.  To  ensure  overall  computational  𝑅  2 

 tractability,  there  are  strict  performance  requirements  for  this  test.  Determination  for  an  arbitrary 
 quadruped  is,  however,  non-trivial,  particularly  if  there  are  asymmetries  in  the  legs  or  variation 
 in the COM height is allowed. 

 To  meet  performance  requirements,  then,  we  implemented  a  heuristic  check  for  viability 
 for  use  in  initial  path  generation.  This  heuristic  conceives  of  the  quadruped  in  two  dimensions, 
 with  each  leg  emanating  from  the  vertex  of  a  rectangle.  The  feet  are  modeled  to  be  able  to 
 independently  reach  any  point  within  a  specified  radius  of  the  leg  origin.  With  this  model,  the 
 free  space  test  is  made  tractable.  The  center  of  the  robot  is  placed  at  the  average  of  the  four  peg 

 positions  in  .  Orientation  is  selected  by  averaging  the  necessary  rotations  to  align  each  leg  𝑅  2 

 origin  with  the  corresponding  peg.  Selecting  an  orientation  and  position  fixes  the  leg  origins,  so  a 
 simple distance test for each foot tells us if the state is in free space. 



 While  this  function  works  well  for  a  large  number  of  potential  states,  it  is  clear  that 
 compared  to  reality  it  is  lacking.  For  instance,  real  quadrupeds  have  coupling  between  foot 
 placements,  in  that  placement  of  foot  relative  to  leg  origin  affects  the  height  of  the  leg  origin, 
 which  in  turn  affects  the  height  of  the  other  leg  origins,  which  in  turn  affect  the  reachable  radii  of 
 the  other  legs.  While  developing  a  full  model  for  this  behavior  is  out  of  the  scope  of  this  project, 
 we wanted a planner that could theoretically use a higher fidelity, less performant model. 

 3.3) Freespace Determination - Numerical 
 As  was  discussed,  there  are  cases  where  the  basic  feasibility  function  fails,  so  flexibility 

 to  include  a  more  complex  model  is  important.  A  higher-fidelity  model  is  very  important  in 
 situations  where  there  are  fewer  pegs  or  only  certain  paths  that  can  be  followed  that  require  the 
 robot  to  stretch  to  its  maximum  range  of  motion.  The  specifics  of  our  higher-fidelity  model  are 
 unimportant,  it  merely  represents  a  higher-cost  calculation  that  can  not  be  used  in  the  planner 
 inner-loop, yet is important to validate our final paths against. 

 To  limit  scope,  our  higher-fidelity  model  again  exists  in  two-dimensional  space,  but  has 
 varying  leg  radii,  meaning  optimal  placement  is  no  longer  at  the  average  of  the  four  peg 
 positions.  The  implementation  uses  the  Scipy  minimize  function,  which  searches  for  a  center 
 position  and  orientation  that  minimizes  shoulder-foot  distances.  Each  distance  is  scaled  inversely 
 to  the  leg  radii  to  account  for  the  variable  reaches.  The  initial  guess  for  the  minimization  uses  the 
 heuristic  selection  method  described  above.  From  the  result  of  this  minimization,  we  determine  if 
 given  the  center  and  angle  of  rotation,  all  of  the  legs  are  able  to  reach  the  desired  peg  position 
 and  if  so,  we  allow  for  this  state  to  be  considered  for  the  path.  This  method  is  able  to  accurately 
 classify  as  free  some  additional  states  (e.g.  a  state  with  all  variable-length  legs  fully  extended), 
 while critically implementing the drop-in interface for a more complex model. 

 Critically,  we  also  select  the  parameters  of  the  heuristic  model  relative  to  those  of  the 
 high-fidelity  model  such  that  the  heuristic  model  should  include  almost  all  valid  states,  ensuring 
 no possibilities are missed when planning. 

 To  see  the  benefits,  let  us  look  at  the  following  example.  In  the  original  implementation, 
 if  we  were  to  have  the  set  of  pegs  (given  in  blue  in  the  images  below),  it  would  choose  the 
 following center (shown in green): 



 The  robot's  legs  (blue  lines)  are  able  to  reach  the  back  with  some  slack  (cannot  be  seen  in 
 a  two-dimensional  representation)  but  the  front  legs  are  unable  to  reach  the  pegs.  As  such,  the 
 configuration would not have been considered feasible. However, with this methodology: 

 We  can  choose  the  more  optimal  center  that  is  further  along  the  x-axis  to  allow  for  the 
 front  legs  to  reach  while  allowing  the  back  legs  to  utilize  their  full  length.  If  we  saw  this  in  a 
 three-dimensional  representation,  the  robot  would  be  fully  splayed  out,  with  the  legs  all  in  the 
 same plane as the body. 

 3.4) Initial Planning 
 As  briefly  described  above,  planning  is  done  using  a  PRM  approach,  which  requires  us  to 

 implement  for  our  problem  a  sampling  method,  a  free  space  test,  and  a  connection  test.  The  free 
 space test was already discussed. 

 Randomly  sampling  the  free  space  is  non-trivial,  because  a  random  set  of  four  pegs  is 
 highly  unlikely  to  be  a  valid  state.  Thus,  we  instead  randomly  select  a  single  peg  and  an  angle. 
 We  then  place  an  imaginary  heuristic  quadruped,  with  one  shoulder  centered  over  the  peg  and 
 facing  the  specified  direction.  We  then  compute  the  centers  of  the  other  legs  and  use  a  KD-tree  to 
 sample  nearby  pegs,  randomly  choosing  candidates  from  each  of  the  three  locusts  to  form  a 
 candidate set of four pegs. Then, as is normal, we perform a freespace test. 

 Connection  testing  is  done  using  an  A*  search  over  the  4-dimensional  configuration 
 lattice.  Adjacency  testing  in  the  search  must  be  done  on-the-fly,  as  we  cannot  explicitly  generate 
 the  intractably-sized  search  graph.  Adjacent  states  are  generated  from  the  current  state  by  again 
 using  a  KD-tree  to  list  all  the  pegs  within  a  reachable  distance  of  the  quadruped,  and  generating 
 the  list  of  all  states  consisting  of  a  single  foot  movement  to  one  of  the  pegs  from  the  current  state. 
 Then, only freespace states are considered. 



 A sampling of states on a uniform peg distribution. 

 We  consider  the  overall  cost  of  a  path  to  be  the  total  distance  moved  by  the  legs,  plus  a 
 constant  penalty  for  each  step  taken.  Thus,  the  heuristic  chosen  for  A*  search  is  the  euclidean 

 distance  in  from  each  foot  in  state  one  to  the  corresponding  foot  in  state  two.  As  mentioned  𝑅  2 

 before,  thus  heuristic  is  penalized  by  a  large  factor  (50  to  100  per  our  tuning)  so  that  this  A*  is 
 tractable. 

 From  this  local  planning  and  connection  test,  we  obtain  an  actual  path  with  a  concrete 
 distance  between  sampled  states.  These  form  the  edges  of  the  roadmap  upon  which  the  final  path 
 is  computed  using  ordinary  A*  with  a  far-less-penalized  heuristic.  Local  paths  are  concatenated 
 to form the global path. 

 The resulting path consists of local paths between the sampled states. 



 3.5) ROS Visualization 
 To  allow  physical  manipulations  of  legs  simultaneously  while  keeping  track  of  the 

 relevant  coordinate  transforms,  each  leg  is  made  to  manage  itself,  with  individual  lists  containing 
 function  calls  to  apply  some  transformation  on  a  leg  root  or  tip  for  each  time  step.  In  this  way,  all 
 transformations  can  be  done  individually  and  at  separate  locations  in  the  code/within  each 
 timestep.  Before  the  final  coordinates  are  sent  to  ROS,  each  leg  iterates  through  the  transforms 
 and  aggregates  the  effects.  These  function  calls  are  ordered  by  when  they  should  be  applied,  in 
 order  to  maintain  validity  on  all  transforms.  Thus,  multiple  legs  can  be  easily  manipulated 
 simultaneously,  and  optimizations  can  then  be  done  for  walking  time  or  other  real-world 
 constraints. 

 3.6) Post-Processing and High-Fidelity Freespace Testing 
 Since  the  A*  searches  used  did  not  incorporate  orientation  into  the  segment  weightings, 

 post-processing  of  the  paths  was  developed  to  avoid  unusual  orientations  where  the  quadruped’s 
 orientation deviates largely from the overall path when there is no need to. 

 The above green quadrupeds showcase states in which the quadruped maintains its orientation with 
 respect to the path. Noting these regions are useful, as they help identify where turns occurred. In some 

 cases, A* may be able to eliminate these unnecessary turns, resulting in a much cleaner path. 

 Thus,  the  post-processing  function  attempted  to  correct  for  these  by  iterating  through  the 
 solved  path  and  computing  the  orientation  of  the  robot  in  addition  to  the  orientation  of  the  path 
 around  it.  If  these  angles  deviated  significantly,  then  the  surrounding  states  could  be  tested  to 
 skip  the  transition,  or  A*  search  run  again  between  the  previous  and  next  states  to  attempt  to  find 
 a  better  intermediate  state  or  states.  This  enabled  straight-line  sections  to  be  found,  and  thus  the 
 pure A* method (without hierarchical planning) can be used as it excels at straight-line solutions. 



 Separately  from  the  above  method,  post-processing  was  also  explored  with  methods 
 similar  to  those  covered  in  class,  where  states  that  are  not  immediately  connected  are  tested  to 
 potentially eliminate states. 

 Additionally,  the  path  is  checked  against  the  high-fidelity  freespace  model  to  ensure  its 
 validity  in  reality.  A  freespace  check  is  made  at  every  state  along  the  path,  and  local  A*  searches 
 are  done  using  the  high-fidelity  freespace  model  to  “patch”  the  resulting  gaps.  These  searches  are 
 in  between  very  close  states,  so  there  are  relatively  few  freespace  checks  required.  Thus, 
 employing  the  high-fidelity  model  is  tractable,  and  the  result  is  a  path  in  agreement  with  the 
 high-fidelity model. 

 3.7) Peg Sampling Methods 
 When  using  pegs  to  model  a  continuously-navigable  terrain,  a  naive  uniform  random 

 sampling  is  non-optimal,  because  it  is  likely  to  leave  gaps  in  the  sampling  unless  the  number  of 
 pegs  is  increased.  Computation  time  can  be  lowered  by  sampling  pegs  using  a  lower-discrepancy 
 method  and  lowering  the  number  of  pegs.  For  ease-of-implementation,  we  chose  to  use  a 
 randomized  two-dimensional  Halton  sequence  (a  generalization  of  the  van  der  Corput  sequence), 
 which  will  pseudo-randomly  sample  the  space,  with  a  uniform  distribution  of  gaps  between  pegs 
 regardless  of  sample  size.  Some  of  our  test  environments  leverage  this  sampling  technique,  and 
 others use ordinary uniform sampling. 



 4) Conclusions 
 This  project  represents  an  extension  of  the  planning  problems  considered  in  class  to  a 

 new  medium,  that  of  the  quadruped.  Our  chosen  simplification  of  the  general  navigation  problem 
 to  a  finite  set  of  valid  foot  locations  resulted  in  a  high-dimensionality  search  space  with  no 
 possible  closed-form  local  planner.  Moreover,  the  problem  did  not  come  with  a  closed-form  (or 
 even defined) freespace definition and required us to come up with our own. 

 We  found  employing  overly-pessimistic  A*  search  as  a  local  planner  to  be  fairly 
 effective.  This  approach  could  generalize  to  other  planning  problems  with  discrete  or  hybrid 
 configuration  spaces.  Others  interested  in  solving  similar  problems  may  also  find  success  with 
 using  A*  as  a  local  planner,  but  perhaps  combining  it  with  a  different  global  method,  such  as 
 RRT. 

 Overall,  our  approach  was  moderately  successful  and  a  fulfilling  conclusion  to  the  133 
 series. 10/10 (squirrels are awesome). 


