
Agnim Agarwal, Krishna Pochana, Neil Janwani, Shiva Sreeram

SCRAT: A Squirrel Based Quadruped

Introduction

Quadruped locomotion presents a challenge in that it requires manipulating and

coordinating four independent appendages which combine in a robot with a large number of

DOFs. Such a task expands on concepts we learned in class this term, such as driving lone arms,

dealing with rigid obstacles, and using secondary tasks to manipulate within the null space of our

kinematic chain. This project seeks to implement and control a quadruped robot within ROS’s

Rviz to walk with a generalized gait and maneuver in-place. In this paper, we create a URDF for

our quadruped, formulate our kinematic chains through which to control the robot, and

ultimately explore our goals of walking and maneuvering using various trajectories while

visualizing in Rviz.

Figure 1: Solidworks model of Scrat



Robot

First, let us look at the robot itself. All parts were designed in Solidworks, with the front

and hind legs modeled differently. Different length ratios and joint styles are used in the front

versus the rear, as can be seen in Figure 1. This was done to more closely model the anatomy of

a squirrel, but also to see how our control methods were affected by the different structures. We

did indeed see differences, with the front legs being able to maneuver with smaller joint

movements due to the smaller joint sizes; however, the hind legs were less prone to multiplicities

due to their larger bend at the elbows and elbow joint design. The assembly was then exported to

a URDF through the Solidworks exporter, and with minor modification loaded into Rviz, as seen

below. The Solidworks URDF generator works by making Solidworks-defined joints the joints in

the URDF. It is possible to add inertias and masses as well to the file, however this was not

necessary as Rviz is a purely visualization tool.

Figure 2: Rviz representation of the robot



This robot was designed to be a quadruped with realistic proportions that allow for

natural movements in its space. As such, we have designed it to have eight degrees of freedom

for each of the front legs and seven for each of the back legs. Thus, there are thirty in total.

Specifically going into what each of these are, the front legs have: shoulder rotation forward and

back, shoulder rotation in and out, rotation of the upper leg, elbow rotation, rotation of the lower

leg, ankle rotation side to side, angle rotation in and out, and foot rotation. For the back legs,

rotation forward and back at the hip, rotation in and out at the hip, rotation of the upper leg, knee

rotation, rotation of the lower leg, ankle rotation up and down, and ankle side to side rotation.

As for the workspace of the robot, the torso is set at 1 meter to start, the front arms, when

fully extended, are 1.4 meters long, and the back legs, when fully extended, are 1.72 meters long.

When using viewurdf.rviz, the joints can be manipulated to move anywhere within the radius of

the length of the leg from where it is attached to the torso but this isn’t the objective for this

project. We do not move through the entire possible workspace, as the goal of the project is to

handle walking gaits and deal with singularities. Thus, in general the tip frame is kept below the

torso of the robot, and we have an effective workspace of overlapping hemispheres below the

torso.

Discussing the particular features, the most important one is the moving base. As we are

performing walking motions, we need this to do more than just walk in place. In addition, notice

that we have extra DOFs in all legs—these are used to make the walking motion appear natural,

to keep the feet flat on the ground unless nearing a singularity (even when maneuvering), and

other secondary tasks. These secondary tasks also allow us to deal with redundancies, such as

dealing with the elbow being in or out. Given that we want to have the walking motion appear

natural, we already have a desired way to handle the redundancies. More detail on the secondary

tasks is given in the sections below.



Task

We are handling each leg individually so we are working with four tips (the feet), each of

which has a dimensionality of six (x,y, z, roll, pitch, and yaw). Given their independence, the

legs are coordinated to achieve the objective for natural motion. Since all of the legs are handled

individually, the task is handled separately for each of them. The forward kinematics is handled

the exact same way as the 7 DOFs arm we worked with in the class. Given that it is generalized,

we simply call the function for both types of legs even though they have a different amount of

DOFs. The overall task works fairly similarly to the 7 DOFs arm–identify target positions, find

the current position using forward kinematics, find the error, and lastly perform inverse

kinematics where we use the Jacobian (which is either 6 by 8 or 6 by 7 depending on the leg) to

optimize where to move. For the Jacobian, there is a secondary task involved: setting centers for

each of the joints where each type of leg has its own set of centers. This is how we handle the

aforementioned redundancy. Not every task is necessarily achievable as one could tell the leg to

move to a position outside of its range of motion (reach a singularity). Because of this possibility,

we have prepared a type of demo to showcase handling singularities. We will go into more detail

regarding all of these topics in the following section.

Algorithm, Implementation & Particular Features

-Moving the root

Normally in Rviz, the root is a static ground to the robot (as it was the robot arms created

in class). However, this root can actually be ‘moved’ by transforming the world frame. This can

give the illusion that the robot is actually walking. While the vector transforms necessary for the

legs and root are discussed later, syntactically completing this objective is fairly simple. First, the

vertical 3-dimensional position vector and 3x3 rotation matrix must be defined for the root

transformation. Then, by creating a T-matrix one can generate a transform to be included in the

command message that will be published to the running instance of Rviz. Adding on the

timestamp to this message, publishing the command will enable the root (or world frame) to be

transformed to wherever desired.

- Walking

A walking gait can be considered as a periodic motion and within each period is a set of

partially overlapping motions with a smaller period, equal to the number of legs. Each leg goes



through the same motion, and to generate a walking gait, we only need to generate one general

walking gait, then change the times at which each leg moves according to the gait. We also need

to consider the fact that each leg does not start at the same position; it is only their position

relative to the original start position that can be described by the same periodic motion. Thus,

when the robot first spawns into Rviz, before beginning any motion, the gait generator records

the starting positions of all four leg tips. Then, the general gait is phase shifted for each leg

relative to the overall period of the leg so that there is a percentage overlap between consecutive

legs. Thus, by connecting overall periods together, we can make a walking motion for arbitrarily

long time lengths.

Looking at the general walking gait, we see that we need to generate motion in two main

directions: in the xy-plane and in the z-direction (thus in task space). We could define closed

loop paths for this, but sine and cosine functions make the velocity calculation much easier, and

lend themselves to easy manipulation. Thus, we have one sine function for motion in the

xy-plane and one for motion in the z-direction. The period of the general gait is controlled by the

sine function for vertical motion, as we always want the leg to start touching the ground and

return to this same position at the end of the leg’s motion. The period of the vertical sine function

can then be chosen according to the desired gait motion. We chose to run the horizontal gait for a

half period and the vertical motion for a quarter period such that the leg would start at the

ground, go up to a maximum, and then return to the ground, while going from the start position

to the maximum amplitude by the end of the leg’s motion. To generate a continuous walking gait,

each leg moves in one step the same horizontal distance the torso moves in an overall period, and

thus at the start of each overall period, each leg is at the same position relative to the torso.

Lastly, we take the dot product of the xy-sine function with the unit vector of the direction the

robot heads in, so that the robot can walk in any direction. The functions for the gait generation

are given below:



One last thing must be considered: the motions of the torso and the legs not in their

walking periods such that the overall body looks as if it is walking while the legs not in motion

look to be stationary. The motion of the torso is given by a velocity that is set by the user

multiplied by the unit direction vector, and thus if a leg is not supposed to be moving, it will be,

by default, moved along with the robot since the robot’s torso is moved. To account for this, we

drive the leg with the same velocity in the opposite direction, so that the stationary legs look as

expected. Thus, we can generate a walking gait in any direction.

Once these points are determined, the velocities at those points and angular velocities are

computed and fed through either a pseudo or weighted inverse (see demonstration video to view

the difference between each inverse method) of the Jacobian to generate our joint velocities. The

joint angles are determined through forward kinematics and integrating to the updated joint

angles. Of importance is that we overactuated our legs (8 DOFs in front, 7 DOFs in rear)

compared to the 6 needed to satisfy the three spatial and three rotational components of the tip

frame. Thus, we used secondary tasks in null space to center the legs so that the elbow of the

front legs did not hit the same joint in the rear legs, and to center the legs. The equations for

integrating the secondary task through the inverse jacobian are given below:



- Singularity Detection

To detect singularities, we recognize that once a singularity occurs in a given leg, that leg

will begin to drag and thus not be able to follow the desired position generated from our walking

gait. Thus, the distance between the position and the desired position will become much greater

at a singularity. To do our detection, we use the following algorithm:

1. From our walking gait, determine an estimate for the desired position, rotation, linear

velocity, and angular velocity at time t + Δt for each leg. Increasing Δt allows for

‘sooner’ singularity detection, while a small Δt will detect singularities right before they

happen.

2. Compute θ-dot using a weighted inverse, with a secondary task centering at the defined

root position

3. From θ-dot, compute theta at t1 = t + Δt and use forward kinematics to get the estimated

Cartesian tip position for each leg at t1

4. For each leg, calculate the distance between the estimated future position and the desired

future position. If this distance exceeds our pre-defined bound of 0.1, signal a singularity

in that leg. Increasing this number allows singularity detection to happen later, while

decreasing this number does the opposite.

This method offers several advantages. We are identifying when the robot is extending

past the task space, which can be identified when the determinant of the Jacobian matrix is close

to zero. However, given the high dimensionality of this matrix for our robot of 30 DOFs, it is not



easy to calculate this without slowing down the program significantly. In comparison, the

calculation of the tip position in this method is more straightforward given our use of fkin to

calculate position from a list of joint values.

Once a singularity is detected in a leg, that leg steps out of the singularity and in the

direction calculated from the path using the walking gait. Once a singularity is detected in a leg,

the base link (the body of the robot) will freeze until the step is complete. In this case, the leg is

set to step using the aforementioned walking code. By defining some 2D amplitude in the

xy-plane, the robot may step some magnitude in the direction of the desired path.

We do this stepping out motion such that it keeps other legs stationary, so upon detecting

a singularity, the stepping motion occurs while keeping all other legs at their same position. In

our simulations, without a singularity, the robot will keep all leg tip positions constant and move

the root frame in the direction of the path, so we generally expect the motion involves 1) the

body stretching in the direction of the path followed by 2) leg stepping when a singularity is

detected.

Since the root frame is moving in the direction of our path, moving the leg back to this

position will allow the robot to continuously move in the path without any change in the robot’s

legs’ relative position at rest. Furthermore, the robot may now follow any 2D path requested by

the user. This is simply due to the fact that the robots swaying direction may be controlled, and

singularity detection can enable the robot to step in the direction of the sway.

Analysis

https://youtu.be/49BmwsE4ZXc

Going through the demos, we see many of the applications mentioned above in the

algorithms and features section. In the diagonal walking demo, we see how the individual leg

gaits are indeed identical, and simply phase shifted relative to each other. We also see the periods

stitch together to make a continuous gait that we can stretch for an arbitrary amount of time.

Lastly, we see that we can move in arbitrary directions, in the shown case the direction is [1,1].

The next demo we are taking a look at is where we force the body to move to the side.

The robot sways by following an x(t) motion (while moving the leg positions by -x(t)) for a bit.

After a certain point, the legs reach a singularity and the legs appear to lose all control. This is

https://youtu.be/49BmwsE4ZXc


due to the fact that only a pseudo-inverse of the Jacobian was used. This is really an overdefined

system, so when a solution can not be found the following control of the leg is completely lost.

Correcting the motion outside the task space, we add weighting to the Jacobian

pseudo-inverse (and make it square). This allows us to achieve a much better result. There is

much less crazy motion, but toward the end we’d still like to see some singularity correction that

prevents the robot from moving outside the task space.

In the singularity correction demo, we see that we can detect singularities using the

methods presented in the last section, and once we are within a certain threshold distance from

the singularity, we use the walking gait motion to move a set of legs (front and/or back as

needed) to get back within the normal joint space of each leg. This threshold can be tuned to be

as close or as far from singularity as desired. We can also see in this section the ability to keep

the lower foot flat to the ground as we maneuver around due to our extra DOFs, as compared to

something like the MIT Cheetah which has spherical point-like contacts and lower DOF legs that

cannot control this.

As you may have noticed in the previous demo, the knees start moving in a strange way:

too far under the robot. To correct for this, we apply a secondary task of centering code where we

have chosen the predetermined angles for the joints. This effect isn’t extremely strong but when

seeing the demo, it allows for the legs to be in a configuration that is more closely aligned with

the expectation of legs relative to the body.

Combining these features allowed us to implement both pushup and crouching demos

where we prevent moving outside the task space in our previously mentioned redundancies, such

as dealing with the elbow being in or out as well as intersecting joints. Integrating our centering

method and our singularities detection provides a much smoother, natural motion for these

experiments.

The last demo then gives us an interesting combination of all the aspects we explored, as

we can maneuver around without regards for whether our point is reachable. In the case that our

the point is unreachable with the legs in their original positions, we can simply correct leg

positions to avoid singularities until we get to the goal point.


