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1 Overview

For a path planning system, one must consider the myriad of trade-offs when selecting

the algorithmic approach to navigating your environment. Your approach is also

heavily dependent on your prior knowledge of the map and the ability to detect any

unexpected discrepancies in the map. As such, in this report, we will explore these

very trade-offs with the following algorithms: Dijkstra, A*, and D*. This exploration

will be conducted in partially known environments where obstacles are discovered as

the robot executes the planned path; consequently replanning needs to occur in order

to navigate the robot to completely to the goal.

2 Approach

2.1 A*/Dijkstra Replanning

For this algorithm, we utilized a generalized A* implementation to accept a graph

populated with nodes and their neighbors to plan from a start to goal node. The deck

is populated by nodes sorted by the sum of the minimum cost to reach said node and

the cost estimate to the goal node. Note that for Dijkstra, the cost to the goal node is

multiplied by zero since Dijkstra’s algorithm is not directed. The costs are computed

by the Euclidean distance metric–from one node to another.

With this implementation, we determine the path from start to the goal node

under the assumption that there are no obstacle nodes present in the system. Then,

we introduce at least one obstacle (represented as a node switched from a traversable

node to an obstacle) right in front of the robot’s traversal along said path. The graph

is reconfigured with this obstacle, causing this obstacle node to lose its neighbors, and
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then the A* planner is run again with the new start position at the location the robot

was at before it detected an obstacle. Throughout this process, we track a variety of

statistics regarding the efficiency of the algorithm which we will report in the Results

and Analysis section.

2.2 D*

2.2.1 D* Concept Overview

To implement D*, we follow the original publication by Anthony Stentz (1994). In

this method, a priority queue is used to store the list of nodes to potentially expand

to their connected neighbors in trying to reach the start node from a rooted goal

node. To sort the queue, we use key values k(x), defined by the minimum path cost

from the rooted goal node to a given graph node over all modifications made since

the node was added to the queue.

The robot starts off with an initial awareness of its environment, with an associated

graph and traversal cost estimates between nodes of this graph; in our case, the robot

knows no obstacles in the graph. From the start position, the robot executes an

initial planning phase to generate a path to the goal. In this phase, there are no

modifications to the path cost estimates once they are added to the priority queue,

and thus h(x) = k(x), where h(x) is the path cost function (an estimate of the arc

path costs from x to goal), for all states x in the graph. Thus, in this phase the path

planner is equivalent to Dijkstra’s algorithm.

When the robot observes an obstacle or other environment change that alters the

traversal cost of a graph segment, this traversal cost is updated and the graph nodes

that are affected are re-inserted into the priority queue. Within the priority queue,

when a node is popped to be processed, we can check its descendant connections.

If the stored path cost no longer reflects the actual path cost (due to the updated

traversal costs), we can update the stored path cost h(x). This yields k(x) < h(x)

and defines a RAISE state, in which a node propagates a cost increase throughout the

graph nodes. This RAISE state is then added onto the queue, as are all neighbors for

similar examination.

Similarly, if the stored path cost does equal the actual path cost, then k(x) = h(x),

which defines a LOWER state. Here, the planner tries to find a new optimal path from

the rooted goal node to the robot’s current position.

These RAISE and LOWER nodes continue to propagate from the obstacle node and

from the ’wavefront’ of RAISE nodes, respectively. We could allow these wavefronts
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to propagate throughout the entire graph, however, once our priority queue processes

a node with kmin such that h(y) ≤ kmin, we know we have done ’enough work’ to

generate our optimal path using backpointers (relating nodes to parents). The reason

for this is because the rest of the priority queue only relates to nodes that are further

away–have a higher cost path–than our current robot position to our goal.

We can repeat this cycle of modifying costs and updating our graph by use of the

functions modify cost and process state respectively. Overall, the combined use

of these functions allows for a highly optimized replanning algorithm, especially when

compared to Dijkstra’s algorithm detailed earlier.

2.2.2 D* Comparison to Dijkstra and A*

To make a comparison between D* and the Dijsktra and A* planners, we initially

plan on an environment with no obstacles. Then, a phase of obstacles is introduced,

as described in the next section. The introduction of obstacles forces a replan for the

Dijkstra and A* planners, while modify cost is used for D* to re-plan by modifying

the existing search tree.

2.3 Environment and Obstacles

The first environment these algorithms must navigate is a randomly seeded set of 500

nodes as well as the start and goal nodes with the domain and range being x ∈ [−5, 5]

and y ∈ [−5, 5]. We then connect nodes to all neighbors that are within a Euclidean

distance of 1. During this process, we will induce a total of four replans due to

obstacles introduced. This environment setup can be seen as follows:

Figure 1: Nodes are shown in blue, connections in green.
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The next type of environment is a rectangle. This rectangle is made in the same

axes and involves connections to the adjacent points in the rectangle. Here, the start

node is (−4,−3) which is the bottom left and the goal node is (4, 3) which is the top

right. In this setup, we will introduce an obstacle, force a replan, introduce another

obstacle while removing the previous one, and force another replan. The environment

setup can be seen as follows:

Figure 2: The rectangle environment the robot will navigate through. Nodes are

shown in blue, connections in green.

Finally, we have the contour environment, in which we model the cost function

as a 3D contour. This, we thought, might be representative of a more realistic robot

environment, one with hills and/or different terrains etc. Again, we maintain that

the start node is at (−4,−4) as in the other environments, as well as the goal being

at (4, 4). However, we of course do not have a straight-line path as we did in the

randomly seeded environment. Furthermore, the contour polynomial is passed into

an exponential function to bound it below from 0 (such that we do not have negative

costs) while maintaining the order of costs in our priority queue.
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Figure 3: Sample contour environment with polynomial z = sin(x)+y2 representative

of the cost function.

2.4 Metrics for Analysis

To compare D* to Dijkstra’s algorithm and A*, we track three main metrics: the

number of nodes added to the ONDECK priority queues, the number of nodes that have

been processed, and the number of iterations made by each algorithm.

The number of nodes added to the queue for each algorithm is representative of

the number of times a node is added to the queue for processing. This means the D*

algorithm, for example, counts every time a node is re-inserted onto the on-deck for

operations such as delaying cost-propagations until optimality is reached.

The number of nodes processed is representative of the number of nodes popped

from the queues during path solving. This is representative of the number of nodes

popped after meaningful computation. For example, due to using Python’s built-

in priority queue for our D* implementation, removing non-surface queue elements

was not possible, and thus duplicate queue insertions were made. Thus, there were

cases where a node would be marked DONE only to re-appear on the queue due to

redundancy. Such nodes were thus not counted.

Lastly, the number of iterations is representative of the number of node expansions

performed by each algorithm, as this is the main action done by the algorithms in

each loop pass.
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3 Results and Analysis

3.1 Random Seeded Environment

We begin with our random seeded environment. The planners initially assume no

obstacles, then obstacles are introduced at nodes 25%, 50%, and 75% along the way

of the latest path, defined O1, O2, O3, respectively. One node before the robot reaches

O1, it detects all three obstacles and begins a replan. For Dijkstra’s algorithm and

A*, this is a complete replan as defined in section 2.1, while for D* this is a graph

modification as described in section 2.2.1. We see the results of our algorithms below:

Figure 4: Each algorithm initially generates the path in red from start to goal, it then

encounters the first set of obstacles (represented as black dots) and replans to form

the path in purple. This process of replanning repeats to form the blue, violet, and

indigo paths. We then show the final path that would form in gold.

Note that all of these paths are the same and in fact all have the same final

cost of 13.4. This is due to the fact that all of these algorithms have a consistent
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cost heuristic and guarantee optimality. The differences will arise when we instead

consider the computational cost of these algorithms.

Figure 5: Tracking the number of nodes placed on the deck, the number of nodes that

have been processed, and the number of iterations (runs of a loop) for each algorithm

as replans occurred due to new obstacles.

Observing the results from these plots, we see the number of nodes processed as

well as iterations before any replanning for D* and Dijkstra are quite similar. This is

to be expected as the cost heuristic is the same for both and the modification of cost

doesn’t arise until later. We do see that for the nodes put on deck, D* is higher, and

this is due to the LOWER state being run and capturing more neighbors to put on the

queue. Eventually, with the replans, D* is significantly more efficient than Dijkstra

thanks to the information it saves. Regardless, we see that A* is better in these

categories, despite not saving information. The directed nature of this algorithm

works very well in this environment as no pockets or bug traps exist. As such, we

see that A* would be the ideal implementation here, although combining directed

planning with the advantages of D* would yield the best algorithm, such as with

focused D* or D* lite.
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3.2 Rectangle Environment

Next, we have the rectangle environment. As discussed, we will introduce an obstacle,

force a replan, introduce another obstacle while removing the previous one, and force

another replan. Let us explore this environment with both A* and D*.

Figure 6: Traversing around the rectangle with an obstacle being introduced along

the path. The first row defines the initial plan before the robot knows of any obstacles

with the path in red. Then, it encounters an obstacle (shown as the black dot) and

replans a path from there shown in purple. However, it encounters a new obstacle

while the previous one is freed up. As such, it replans once more from here, reaching

the goal in the blue path.
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For both of these, the final cost of the path is 18. An interesting point of note,

unlike the Random Seed Environment, D* performs better than A* in the metrics we

discussed.

A* Nodes On Deck D* Nodes On Deck

Initial 27 27

Replan 1 49 41

Replan 2 61 48

A* Nodes Processed D* Nodes Processed

Initial 27 28

Replan 1 48 41

Replan 2 59 46

A* Iterations D* Iterations

Initial 54 54

Replan 1 96 94

Replan 2 118 104

We see the initial values are about the same as the direction from A*’s cost to goal

heuristic isn’t particularly helpful since both directions to move from the start have

the same result. However, the saved information in D* was helpful in reducing com-

putation. As such, in this environment, D* is the ideal implementation of the two.

3.3 Contour environment

One of the benefits of D* is the ability to alter the cost function continuously as the

robot traverses the graph. For instance, imagine the robot is attempting to traverse a

windy environment in which large amounts of sand cover the rocky surface. Assume

the robot’s wheels perform better on a rocky surface, and thus it defines such surfaces

as safer–having lower cost. Unfortunately, due to the wind, the sand frequently

changes positions. The resulting partially known (at least initially) graph can be

searched efficiently with D*. We show an example below:
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Figure 7: On the left is the initially discovered environment. Midway through the

path, the robot determines that the environment has changed. We model the 2D cost

function using a contour plot.

We now plan with Dijkstra’s algorithm in the same environment, with the same

resultant path being achieved once the contour change is enacted and replanning is

executed. Furthermore, since the entire contour cost surface changed, D*’s previous

knowledge of the graph is essentially overloaded by its wavefronts. Thus, Dijkstra and

D* perform identically in terms of computational speed, nodes processed, and nodes

ondeck. This is because path-optimality is maintained in both the D* and Dijkstra

implementations, and thus paths of the same cost, and in thus the same segments,

are achieved.

Figure 8: We repeat the same procedure with Dijkstra’s algorithm. On the left is

the initially discovered environment. Midway through the path, the robot determines

that the environment has changed. We model the 2D cost function using a contour

plot.
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4 Conclusion

In this project, we have shown implementations of Dijsktra’s algorithm, A*, and D*

that can be used for robot path planning in dynamic environments. Through simu-

lation in environments representative of traveling through well-connected space, con-

stricted space, and a continuous-changing-cost space, we have demonstrated how D*

can be used to navigate in a wide breadth of terrains that might be found in the real

world. Lastly, we have made comparisons between the three planning algorithms in

these environments, showing that in environments where there are changes relatively

close to the robot, D* enables a large reduction in computational time and memory

requirement, with the difference increasing as the number of replans increases. How-

ever, large propagations of environmental changes negates this advantage, yielding

performance similar to other optimal planners such as Dijkstra’s algorithm.

This project lays down a code base that can be used for future comparisons in-

cluding more detailed testing of computation and memory requirements versus the

number of replans using a larger variety of environments with more interesting ob-

stacles to reach edge cases. In addition, more variants of the D* family could be

implemented, such as focused D* or D* lite to make a more meaningful compari-

son with A*. Lastly, the code base could be expanded to parse sensor inputs and

potentially be used in ROS simulation or a physical robot, such as Flippert Jr.

Figure 9: Flippert (Jr.)
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5 Appendix

We include our (public) Github repository here. We also include our planner code
below:

import numpy as np

import bisect

from queue import PriorityQueue

from lib.node import *

class Planner:

def __init__(self, init_onDeck = 0, init_processed = 0, init_iterations=0):

self.nodes_onDeck = init_onDeck

self.nodes_processed = init_processed

self.iterations = init_iterations

def plan():

raise NotImplemented

def getCounts(self):

return (self.nodes_onDeck, self.nodes_processed, self.iterations)

def addOnDeck(self):

self.nodes_onDeck += 1

def removeOnDeck(self):

self.nodes_onDeck -= 1

def addProcessed(self):

self.nodes_processed += 1

def addIterations(self):

self.iterations += 1

class Astar(Planner):

def __init__(self, cost_multiplier=1, init_onDeck = 0, init_processed = 0, init_iterations = 0):

super().__init__(init_onDeck, init_processed, init_iterations)

self.path = []

self.cost_multiplier = cost_multiplier

def plan(self, graph, start, goal):

onDeck = []

start.state = Node.ONDECK

start.creach = 0.0

start.cost = self.cost_multiplier * start.cost_to(goal)

start.parent = None

bisect.insort(onDeck, start)

while True:

# Grab the next node (first on the sorted on-deck list)

node = onDeck.pop(0)

# Check the neighbors

for neighbor in graph[node]:

self.addIterations()

# Skip if already processed

if neighbor.state == Node.DONE:

continue

# Pre-compute the new cost to reach the neighbor

cdelta = node.cost_to(neighbor)

creach = node.creach + cdelta

# If already on deck: skip if lower/same cost, else remove

if neighbor.state == Node.ONDECK:

if neighbor.creach <= creach:

continue
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onDeck.remove(neighbor)

self.removeOnDeck()

# Add to the on-deck queue (in the right order)

neighbor.state = Node.ONDECK

self.addOnDeck()

neighbor.creach = creach

neighbor.cost = creach + self.cost_multiplier * neighbor.cost_to(goal)

neighbor.parent = node

bisect.insort(onDeck, neighbor)

# Mark this node as processed

node.state = Node.DONE

# Check whether the goal is thereby done

if goal.state == Node.DONE:

break

# Make sure we have something pending on the on-deck queue

if not (len(onDeck) > 0):

print("FAILED")

return None, None

# Create the path to the goal (backwards)

node = goal

path = []

while node is not None:

path.insert(0, node)

# Move to the parent

node = node.parent

for node in graph.keys():

if node.state == Node.DONE:

self.addProcessed()

# total_cost = 0

# for i in range(len(path) - 1):

# total_cost += path[i].cost_to(path[i+1])

total_cost = goal.creach

return path, total_cost

class Dstar(Planner):

NEW = 0

OPEN = 1

CLOSED = 2

def __init__(self, g, graph, init_onDeck = 0, init_processed = 0,

init_iterations = 0):

"""

Initialization function (many details are left out and can be seen in

the D* paper) that declares variables and initializes dictionaries.

g is the goal

graph is the environment graph dictionary

"""

super().__init__(init_onDeck, init_processed, init_iterations)

self.t = {} # the types for a state X (i.e. NEW,

# OPEN, or CLOSED)

self.h = {} # the current ESTIMATES (i.e. robot

# may find it is wrong) of the arc

# costs from goal to X

self.k = {} # decides whether we are a RAISE,

# LOWER, or Dijkstra "mode". these

# are the priorities used to order

# the pqueue. This is the

# simplification made by Gunters

# approach
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self.b = {} # backpointers dictionary to later

# reconstruct the path. Very

# important for D*...

self.open_list = PriorityQueue() # OPEN list of states

self.path = [] # will eventually hold the path

self.graph = graph # graph with neighbor relations

self.total_cost = 0

# initialization steps

for x in graph.keys():

self.t[x] = Dstar.NEW

self.goal = g

self.h[g] = 0

self.open_list.put((self.h[g], self.goal))

self.t[g] = Dstar.OPEN

self.b[self.goal] = None

self.fullpath = []

def min_state(self):

"""

Returns the top of the OPEN priority queue

"""

return self.open_list.get(block=False)

def get_kmin(self):

"""

Peeks at the top of the OPEN priority queue

"""

kmin, temp = self.open_list.get(block=False)

self.open_list.put((kmin, temp))

return kmin

def insert(self, x, h_new):

"""

Inserts states into the open list based on their RAISE, LOWER, or

'Dijkstra' state

"""

if self.t[x] == Dstar.NEW:

self.k[x] = h_new

elif self.t[x] == Dstar.OPEN:

self.k[x] = min(self.k[x], h_new)

elif self.t[x] == Dstar.CLOSED:

self.k[x] = min(self.h[x], h_new)

self.h[x] = h_new

self.t[x] = Dstar.OPEN

self.open_list.put((self.k[x], x))

self.addOnDeck()

def process_state(self, start):

"""

Compute one iteration of D*

start is the start state (note the goal state is fixed)

"""

k_old, x = self.min_state()

# print(k_old, x)

if x == None:

Exception('Priority queue is empty')

# print(x.x, x.y)

if self.t[x] == Dstar.CLOSED:

return 0

self.t[x] = Dstar.CLOSED

self.addProcessed()
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if start != None and self.t[start] == Dstar.CLOSED:

return 0

# RAISE state

if k_old < self.h[x]:

for y in self.graph[x]:

self.addIterations()

if self.h[y] <= k_old and self.h[x] > self.h[y] + x.cost_to(y):

self.b[x] = y

self.h[x] = self.h[y] + x.cost_to(y)

# LOWER state

if k_old == self.h[x]:

for y in self.graph[x]:

self.addIterations()

if self.t[y] == Dstar.NEW \

or (self.b[y] == x and self.h[y] != self.h[x] + x.cost_to(y)) \

or (self.b[y] != x and self.h[y] > self.h[x] + x.cost_to(y)):

self.b[y] = x

self.insert(y, self.h[x] + x.cost_to(y))

# "DIJKSTRA" state (effectively a dijkstra implementation)

else:

for y in self.graph[x]:

self.addIterations()

if self.t[y] == Dstar.NEW \

or (self.b[y] == x and self.h[y] != self.h[x] + x.cost_to(y)):

self.b[y] = x

self.insert(y, self.h[x] + x.cost_to(y))

else:

if self.b[y] != x and self.h[y] > self.h[x] + x.cost_to(y):

self.insert(x, self.h[x])

else:

if self.b[y] != x \

and self.h[x] > self.h[y] + y.cost_to(x) \

and self.t[y] == Dstar.CLOSED \

and self.h[y] > k_old:

self.insert(y, self.h[y])

return self.get_kmin()

def modify_cost(self, x, y, cval):

if cval == float('inf'): x.make_obstacle()

elif cval == 0: x.make_free()

else:

x.set_cost(cval)

# assert(x.cost_to(y) == cval)

if self.t[x] == Dstar.CLOSED:

self.insert(x, self.h[x])

return None #self.get_kmin()

def plan(self, start, y=None):

curr_k = 0

def get_condition(curr_k):

if y == None:

return self.t[start] != Dstar.CLOSED

else:

return curr_k < self.h[y]

init = None

if y == None:

init = start

while get_condition(curr_k) and curr_k > -1:

curr_k = self.process_state(init)

self.path = []

if y == None:

node = start

self.total_cost = 0
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else:

node = y

while True:

self.path.append(node)

if node == self.goal:

break

node = self.b[node]

if y == None:

self.fullpath = self.path

else:

self.fullpath = self.fullpath[:self.fullpath.index(y)] + self.path

print('COST:', np.sum([self.fullpath[i].cost_to(self.fullpath[i + 1]) for i in range(len(self.fullpath) - 1)]))

return self.path
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